

# Épreuve 2020 **Mathématiques** (concours ENAC EPL/S)

# Préambule

Ce document propose l'énoncé de l'épreuve de Mathématiques du concours EPL/S 2020.

# Consignes

La durée de l'épreuve est de 2h. La calculatrice est interdite. Le jour de l'épreuve, les réponses sont reportées sur un formulaire où le candidat noirci les cases «A», «B», «C», «D» ou «E». Il est demandé d'utiliser un stylo bille ou une pointe feutre de couleur noire.

Le candidat doit choisir au plus 24 questions parmi les 36 proposées.

Les questions comportent zéro, une ou deux réponses correctes. Dans le cas où le candidat juge qu'aucune des propositions n'est juste, il noircira la case «E» sur le formulaire de réponses.

En cas de réponse fausse, aucune pénalité n'est appliquée.

### Questions liées

### **Notations**

Les lettres  $\mathbb{R}$ ,  $\mathbb{C}$ ,  $\mathbb{Q}$ ,  $\mathbb{N}$  et  $\mathbb{Z}$  désignent respectivement les ensembles des réels, des complexes, des rationnels, des entiers naturels et des entiers relatifs.

On rappelle que  $e^{ix} = \cos(x) + i\sin(x)$  où i désigne le nombre complexe tel que  $i^2 = -1$  et x est un nombre réel.

 $\mathbb{R}[X]$  désigne l'ensemble des polynômes à coefficients réels.

# PARTIE I

Étant donné un paramètre réel  $\alpha$ , on note  $E_{\alpha}$  l'ensemble des suites  $(u_n)_{n\in\mathbb{N}}$  de réels qui vérifient, pour tout n positif, la relation :

$$u_{n+2} = \alpha \left( u_{n+1} + u_n \right)$$

### Question 1:

On peut établir :

- **A** Pour tout  $\alpha$  réel, il existe deux réels non nuls r et s, avec r < s, tels que les suites  $(r^n)_{n \in \mathbb{N}}$  et  $(s^n)_{n \in \mathbb{N}}$  appartiennent à l'ensemble  $E_{\alpha}$ .
- **B** Pour tout  $\alpha > 0$ , il existe deux réels non nuls r et s, avec r < s, tels que les suites  $(r^n)_{n \in \mathbb{N}}$  et  $(s^n)_{n \in \mathbb{N}}$  appartiennent à l'ensemble  $E_{\alpha}$ .
- **C** Pour tout  $\alpha < -4$ , il existe deux réels non nuls r et s, avec r < s, tels que les suites  $(r^n)_{n \in \mathbb{N}}$  et  $(s^n)_{n \in \mathbb{N}}$  appartiennent à l'ensemble  $E_{\alpha}$ .
- **D** Pour tout  $\alpha \in ]-4;0[$ , il existe deux réels non nuls r et s, avec r < s, tels que les suites  $(r^n)_{n \in \mathbb{N}}$  et  $(s^n)_{n \in \mathbb{N}}$  appartiennent à l'ensemble  $E_{\alpha}$ .

#### Question 2:

Alors, lorsqu'ils existent, les réels r et s vérifient :

**A** - 
$$r = -4, s = 0$$
 et  $|r| > |s|$ .

$$\mathbf{B} - r = \frac{\alpha + \sqrt{\alpha(\alpha + 4)}}{2}, \ s = \frac{\alpha - \sqrt{\alpha(\alpha + 4)}}{2} \text{ et } |r| > |s|.$$

$$\mathbf{C} - r = \frac{\alpha - \sqrt{\alpha(\alpha+4)}}{2}, \ s = \frac{\alpha + \sqrt{\alpha(\alpha+4)}}{2} \ \mathrm{et} \ |r| < |s|.$$

$$\mathbf{D} - r = \frac{\alpha - \sqrt{\alpha(\alpha+4)}}{2}, \ s = \frac{\alpha + \sqrt{\alpha(\alpha+4)}}{2} \ \text{et} \ |r| > |s|.$$

### Question 3:

On suppose  $\alpha \in ]-4;0[$ . Soit  $(w_n)_{n\in\mathbb{N}}$  une suite dont le terme général s'écrit sous la forme :

$$w_n = ar^n + bs^n,$$

avec  $(a;b) \in \mathbb{R}^2$ , r et s étant solutions de l'équation :

$$x^2 + \alpha x + \alpha = 0$$

**A** - La suite  $(w_n)_{n\in\mathbb{N}}$  appartient à  $E_\alpha$ 

**B** - La suite  $(w_n)_{n\in\mathbb{N}}$  appartient à  $E_{-\alpha}$ 

 ${\bf C}$  - Pour toute suite  $(u_n)_{n\in\mathbb{N}}\in E_\alpha$ , il existe un couple de réels (a;b) tels que  $u_n=ar^n+bs^n$ .

**D** - Pour toute suite  $(u_n)_{n\in\mathbb{N}}\in E_{-\alpha}$ , il existe un couple de réels (a;b) tels que  $u_n=ar^n+bs^n$ .

## Question 4:

On suppose  $\alpha \in \left]0; \frac{1}{2}\right[$  Soit  $(u_n)_{n \in \mathbb{N}}$  une suite appartenant à  $E_{\alpha}$ :

**A** - La suite  $(u_n)_{n\in\mathbb{N}}$  converge vers une limite l>0.

**B** - La suite  $(u_n)_{n\in\mathbb{N}}$  converge vers 0.

**C** - La suite  $(u_n)_{n\in\mathbb{N}}$  tend vers  $+\infty$ .

**D** - La suite  $(u_n)_{n\in\mathbb{N}}$  n'a pas de limite.

# Question 5:

Connaissant  $u_0$  et  $u_1$ , on peut écrire :

**A** - 
$$u_n = \frac{u_0 s - u_1}{s - r} r^n + \frac{u_1 - u_0 r}{s - r} s^n$$

**B** - 
$$u_n = \frac{u_1 s - u_0}{s - r} r^n + \frac{u_0 - u_1 r}{s - r} s^n$$

$$\mathbf{C} - u_n = \frac{u_1 - u_0 r}{s - r} r^n + \frac{u_0 s - u_1}{s - r} s^n$$

$$\mathbf{D} - u_n = \frac{u_0 - u_1 r}{s - r} r^n + \frac{u_1 s - u_0}{s - r} s^n$$

### Question 6:

On montre alors:

**A** - Si  $u_0s - u_1 \neq 0$ , alors il existe un indice  $n_0$  tel que, pour tout  $n > n_0$ ,  $u_n$  ne s'annule pas et garde un signe constant. De plus, on a :

$$\lim_{n \to \infty} \frac{\ln|u_n|}{n} = \ln|s|$$

**B** - Si  $u_0s - u_1 \neq 0$ , alors il existe un indice  $n_0$  tel que, pour tout  $n > n_0$ ,  $u_n$  ne s'annule pas et garde un signe constant. De plus, on a :

$$\lim_{n \to \infty} \frac{\ln|u_n|}{n} = \ln|r|$$

C - Si  $u_1 - u_0 r \neq 0$ , alors il existe un indice  $n_0$  tel que, pour tout  $n > n_0$ ,  $u_n$  ne s'annule pas et garde un signe constant. De plus, on a :

$$\lim_{n \to \infty} \frac{\ln|u_n|}{n} = \ln|s|$$

**D** - Si  $u_1 - u_0 r \neq 0$ , alors il existe un indice  $n_0$  tel que, pour tout  $n > n_0$ ,  $u_n$  ne s'annule pas et garde un signe constant. De plus, on a :

$$\lim_{n \to \infty} \frac{\ln |u_n|}{n} = \ln |r|$$

### Question 7:

Par contre:

**A** - Si  $u_0s - u_1 = 0$ , alors  $u_n$  change de signe à chaque rang. De plus, on a :

$$\lim_{n \to \infty} \frac{\ln |u_n|}{n} = \ln |s|$$

**B** - Si  $u_0s - u_1 = 0$ , alors  $u_n$  change de signe à chaque rang. De plus, on a :

$$\lim_{n \to \infty} \frac{\ln|u_n|}{n} = \ln|r|$$

 $\mathbf{C}$  - Si  $u_1 - u_0 r = 0$ , alors  $u_n$  change de signe à chaque rang. De plus, on a :

$$\lim_{n \to \infty} \frac{\ln |u_n|}{n} = \ln |s|$$

**D** - Si  $u_1 - u_0 r = 0$ , alors  $u_n$  change de signe à chaque rang. De plus, on a :

$$\lim_{n \to \infty} \frac{\ln|u_n|}{n} = \ln|r|$$

### Question 8:

Supposons maintenant  $\alpha > \frac{1}{2}$ . Les suites bornées de  $E_{\alpha}$  sont les suites  $(u_n)_{n \in \mathbb{N}}$  telles que :

**A** -  $u_0s - u_1 = 0$ . Ces suites  $(u_n)_{n \in \mathbb{N}}$  sont alors de la forme  $u_n = \mu s^n$ ,  $\mu \in \mathbb{R}$ .

**B** -  $u_0s - u_1 = 0$ . Ces suites  $(u_n)_{n \in \mathbb{N}}$  sont alors de la forme  $u_n = \mu r^n$ ,  $\mu \in \mathbb{R}$ .

**C** -  $u_1 - u_0 r = 0$ . Ces suites  $(u_n)_{n \in \mathbb{N}}$  sont alors de la forme  $u_n = \mu r^n$ ,  $\mu \in \mathbb{R}$ .

**D** -  $u_1 - u_0 r = 0$ . Ces suites  $(u_n)_{n \in \mathbb{N}}$  sont alors de la forme  $u_n = \mu s^n$ ,  $\mu \in \mathbb{R}$ .

# PARTIE II

Pour tout  $n \in \mathbb{N}$ , on considère les fonctions  $t_n$  telles que  $t_n(x) = \cos(n \arccos(x))$ .

## Question 9:

L'identité  $\cos(\arccos(\alpha)) = \alpha$  est vérifiée pour  $\alpha \in I$ , avec :

$$\mathbf{A}$$
 -  $I = \mathbb{R}$ 

**B** - 
$$I = [0; \pi]$$

$$\mathbf{C}$$
 -  $I = \left[ -\frac{\pi}{2}; \frac{\pi}{2} \right]$ 

$$\mathbf{D} - I = [-1; 1]$$

## Question 10:

L'identité  $\arccos(\cos(\alpha)) = \alpha$  est vérifiée pour  $\alpha \in J$ , avec :

$$\mathbf{A}$$
 -  $J=\mathbb{R}$ 

**B** - 
$$J = [0; \pi]$$

$$\mathbf{C} - J = \left[ -\frac{\pi}{2}; \frac{\pi}{2} \right]$$

$$D - J = [-1; 1]$$

# Question 11:

On en déduit que, pour tout entier naturel n:

**A** - La fonction 
$$t_n$$
 est définie sur  $D = \left[ -\frac{\pi}{2}; \frac{\pi}{2} \right]$ .

**B** - La fonction 
$$t_n$$
 est définie sur  $D = [0; \pi]$ .

$${\bf C}$$
 - La fonction  $t_n$  est définie sur  $D=[-1;1].$ 

**D** - La fonction 
$$t_n$$
 est définie sur  $D = \mathbb{R}$ .

### Question 12:

On a:

**A** - Pour tout 
$$x \in D$$
,  $t_0(x) = 1$  et  $t_1(x) = x$ .

**B** - Pour tout 
$$x \in D$$
,  $t_0(x) = 1$  et  $t_1(x) = \pi - x$ .

**C** - Pour tout 
$$x \in D$$
,  $t_2(x) = 1 - 2x^2$  et  $t_3(x) = 4x^3 - 3x$ .

**D** - Pour tout 
$$x \in D$$
,  $t_2(x) = 2x^2 - 1$  et  $t_3(x) = 3x - 4x^3$ .

# Question 13:

Pour  $n \in \mathbb{N}^*$  et  $k \in \mathbb{Z}$ , on note  $\theta_k = \frac{2k+1}{2n}\pi$ . La fonction  $t_n$  s'annule pour :

$$\mathbf{A} - x_k = \theta_k, \ k \in \mathbb{Z}.$$

**B** - 
$$x_k = \theta_k, k \in \{0, ..., n-1\}.$$

$$\mathbf{C} - x_k = \cos(\theta_k), \ k \in \mathbb{Z}.$$

**D** - 
$$x_k = \cos(\theta_k), k \in \{0, ..., n-1\}.$$

### Question 14:

On suppose  $n \ge 2$  et  $p \in \{1, ..., n-1\}$ . On montre que :

**A** - 
$$\sum_{k=0}^{n-1} e^{ip\theta_k} = 0$$
 si  $p$  est impair

$$\mathbf{B} - \sum_{k=0}^{n-1} e^{ip\theta_k} = \frac{1}{\sin\left(\frac{p\pi}{2n}\right)} \text{ si } p \text{ est pair}$$

$$\mathbf{C} - \sum_{k=0}^{n-1} e^{ip\theta_k} = 0$$
 si  $p$  est pair

$$\mathbf{D} - \sum_{k=0}^{n-1} eip\theta_k = \frac{1}{\sin\left(\frac{p\pi}{2n}\right)} \text{ si } p \text{ est impair}$$

### Question 15:

Ainsi, on en déduit que, si les  $x_k$ ,  $k \in \{0, ..., n-1\}$  sont solutions de l'équation  $t_n(x) = 0$ :

$$\mathbf{A} - \sum_{k=0}^{n-1} t_p(x_k) = 0 \text{ si } p \text{ est impair}$$

$$\mathbf{B} - \sum_{k=0}^{n-1} t_p(x_k) = \frac{1}{\sin\left(\frac{p\pi}{2n}\right)} \text{ si } p \text{ est pair}$$

$$\mathbf{C} - \sum_{k=0}^{n-1} t_p(x_k) = 0 \text{ si } p \text{ est pair}$$

$$\mathbf{D} - \sum_{k=0}^{n-1} t_p(x_k) = \frac{1}{\sin\left(\frac{p\pi}{2n}\right)} \text{ si } p \text{ est impair}$$

### Question 16:

On admet que pour  $x \in I$ , le changement de variable bijectif  $\theta = \arccos(x)$  permet d'écrire  $t_n(x) = \cos(n\theta)$ , avec  $\theta \in J$ . Pour  $n \ge 1$ , on a :

**A** - 
$$t_{n-1}(x) + t_{n+1}(x) = xt_n(x)$$

**B** - 
$$t_{n-1}(x) + t_{n+1}(x) = 2xt_n(x)$$

$$C - t_{n-1}(x) + t_{n+1}(x) = -xt_n(x)$$

**D** - 
$$t_{n-1}(x) + t_{n+1}(x) = -2xt_n(x)$$

### Question 17:

Ainsi, pour tout  $n \in \mathbb{N}$  la fonction  $t_n$  est la restriction à I d'un polynôme  $T_n$  de  $\mathbb{R}[X]$ .

- **A** Le polynôme  $T_n$  est de degré n-1, pour  $n \ge 1$  son terme de plus haut degré admet pour coefficient  $2^n$
- **B** Le polynôme  $T_n$  est de degré n, pour  $n \ge 1$  son terme de plus haut degré admet pour coefficient  $2^{n+1}$
- C Le polynôme  $T_n$  est de degré n+1, pour  $n \ge 1$  son terme de plus haut degré admet pour coefficient  $2^n$
- **D** Le polynôme  $T_n$  est de degré n, pour  $n \ge 1$  son terme de plus haut degré admet pour coefficient  $2^{n-1}$

### Question 18:

On peut montrer que:

- $\mathbf{A}$  Le polynôme  $T_n$  admet à la fois des racines réelles et des racines complexes non réelles.
- ${\bf B}$  Les racines du polynôme  $T_n$  sont toutes réelles.
- $\mathbb{C}$  Les racines du polynôme  $T_n$  sont toutes complexes non réelles.
- ${\bf D}$  On ne peut pas se prononcer sur le caractère réel ou non des racines du polynôme  $T_n$  : cela dépend de n

# PARTIE III

Soit E un espace vectoriel sur  $\mathbb{R}$ , d'élément neutre  $0_E$ , et Id l'application identique de E dans E. L'ensemble L(E) est l'ensemble des endomorphismes de E.

On dit que p, élément de L(E), est un projecteur si et seulement si  $p^2 = p$ . Dans cette partie, p désigne un projecteur de E.

### Question 19:

Soit  $u \in E$ . On a :

**A** - 
$$u \in \text{Im}(p) \Leftrightarrow p(u) = 0_E$$

$$\mathbf{B} - u \in \operatorname{Im}(p) \Leftrightarrow p(u) = u$$

$$\mathbf{C} - u \in \operatorname{Ker}(p) \Leftrightarrow p(u) = 0_E$$

**D** - 
$$u \in \text{Ker}(p) \Leftrightarrow p(u) = u$$

### Question 20:

On a:

**A** - 
$$\operatorname{Ker}(p) \cap \operatorname{Im}(p) = \emptyset$$

**B** - 
$$Ker(p) \cup Im(p) = E$$

 $\mathbf{C}$  -  $\mathrm{Ker}(p)$  et  $\mathrm{Im}(p)$  sont complémentaires dans E.

**D** - Ker(p) et Im(p) sont supplémentaires dans E.

### Question 21:

L'application linéaire q = Id - p vérifie :

**A** - 
$$q^2 = q$$
 et  $Ker(q) = Ker(p)$ 

**B** - 
$$q^2 = p$$
 et  $Ker(q) = Im(p)$ 

$$\mathbf{C} - q^2 = q$$
 et  $\operatorname{Im}(q) = \operatorname{Ker}(p)$ 

**D** - 
$$q^2 = p$$
 et  $Im(p) = Im(p)$ 

Soit F et G deux sous-espaces vectoriels supplémentaires dans E. On admet la propriété (P) suivante :

$$(P):$$
 Pour tout  $u\in E,$  il existe un unique couple  $(u_1,u_2)\in F\times G$  tel que  $u=u_1+u_2$ 

On introduit  $p_1$  et  $q_1$ , applications de E dans E définies par :

Pour tout  $u \in E$ ,  $p_1(u) = u_1$  et  $q_1(u) = u_2$ , où  $(u_1, u_2)$  est donné par la propriété (P)

L'application  $p_1$  est la projection sur F parallèlement à G, alors que  $q_1$  est la projection sur G parallèlement à F.

### Question 22:

 ${\bf A}$  -  $p_1$  est un endomorphisme de G

 ${\bf B}$  -  $p_1$  est un projecteur de G

 ${f C}$  -  $q_1$  est un endomorphisme de F

 $\mathbf{D}$  -  $q_1$  est un projecteur de F

### Question 23:

Dans  $\mathbb{R}^3$  muni de la base  $(\overrightarrow{i},\overrightarrow{j},\overrightarrow{k})$ , on considère :

$$F = \left\{ (x, y, z) \in \mathbb{R}^3 \text{ tels que } x = y = z \right\}$$
 et  $G = \left\{ (x, y, z) \in \mathbb{R}^3 \text{ tels que } 2x + y = 0 \right\}$ 

**A** - F est un sous-espace vectoriel de  $\mathbb{R}^3$ , mais pas G.

**B** - G est un sous-espace vectoriel de  $\mathbb{R}^3$ , mais pas F.

C - F et G sont deux sous-espaces vectoriels de  $\mathbb{R}^3$ .

**D** - F et G sont supplémentaires dans  $\mathbb{R}^3$ 

### Question 24:

La projection p sur F parallèlement à G est représentée de façon matricielle dans la base  $(\overrightarrow{i}, \overrightarrow{j}, \overrightarrow{k})$  par :

$$\mathbf{A} - M = \begin{pmatrix} 1 & 1 & 0 \\ 1 & -2 & 0 \\ 1 & 0 & 1 \end{pmatrix} \qquad \mathbf{C} - M = \begin{pmatrix} \frac{2}{3} & \frac{1}{3} & 0 \\ \frac{1}{3} & -\frac{1}{3} & 0 \\ -\frac{2}{3} & -\frac{1}{3} & 1 \end{pmatrix}$$

$$\mathbf{B} - M = \begin{pmatrix} \frac{2}{3} & \frac{1}{3} & 0 \\ \frac{2}{3} & \frac{1}{3} & 0 \\ \frac{2}{3} & \frac{1}{3} & 0 \end{pmatrix} \qquad \mathbf{D} - M = \begin{pmatrix} \frac{1}{3} & -\frac{1}{3} & 0 \\ -\frac{2}{3} & \frac{2}{3} & 0 \\ -\frac{2}{3} & -\frac{1}{3} & 1 \end{pmatrix}$$

# Question 25:

La projection q sur G parallèlement à F est représentée de façon matricielle dans la base  $(\overrightarrow{i},\overrightarrow{j},\overrightarrow{k})$  par :

$$\mathbf{A} - N = \begin{pmatrix} 1 & 1 & 0 \\ 1 & -2 & 0 \\ 1 & 0 & 1 \end{pmatrix} \qquad \mathbf{C} - N = \begin{pmatrix} \frac{2}{3} & \frac{1}{3} & 0 \\ \frac{1}{3} & -\frac{1}{3} & 0 \\ -\frac{2}{3} & -\frac{1}{3} & 1 \end{pmatrix}$$

$$\mathbf{B} - N = \begin{pmatrix} \frac{2}{3} & \frac{1}{3} & 0 \\ \frac{2}{3} & \frac{1}{3} & 0 \\ \frac{2}{3} & \frac{1}{3} & 0 \\ \frac{2}{3} & \frac{1}{3} & 0 \end{pmatrix}$$

$$\mathbf{D} - N = \begin{pmatrix} \frac{1}{3} & -\frac{1}{3} & 0 \\ -\frac{2}{3} & \frac{2}{3} & 0 \\ -\frac{2}{3} & -\frac{1}{3} & 1 \end{pmatrix}$$

### Question 26:

Soit f l'application linéaire de  $\mathbb{R}^3$  définie par la matrice  $A=\frac{1}{10}\begin{pmatrix}3&6&9\\2&4&6\\1&2&3\end{pmatrix}$  :

 ${\bf A}$  - L'application f est la projection sur F' parallèlement à G', avec :

$$F' = \left\{ (x, y, z) \in \mathbb{R}^3 \text{ tels que } x + 2y + 3z = 0 \right\}$$

et 
$$G' = \{(x, y, z) \in \mathbb{R}^3 \text{ tels que } 2x = 3y = 6z\}$$

 ${\bf B}$  - L'application f est la projection sur F' parallèlement à G', avec :

$$F' = \left\{ (x, y, z) \in \mathbb{R}^3 \text{ tels que } 2x = 3y = 6z \right\}$$

et 
$$G' = \{(x, y, z) \in \mathbb{R}^3 \text{ tels que } x + 2y + 3z = 0\}$$

 $\mathbf{C}$  - L'application f est la projection sur F' parallèlement à G', avec :

$$F' = \{(x, y, z) \in \mathbb{R}^3 \text{ tels que } 2x = 3y = -3z\}$$

et 
$$G' = \{(x, y, z) \in \mathbb{R}^3 \text{ tels que } x + 2y + 3z = 0\}$$

 $\mathbf{D}$  - L'application f n'est pas une projection.

### PARTIE IV

On désigne par "carré parfait" tout entier  $n \in \mathbb{N}$  tel qu'il existe un entier q vérifiant  $q^2 = n$ .

### Question 27:

La somme de cinq carrés parfaits d'entiers consécutifs :

- A est toujours un carré parfait.
- B est un carré parfait si le plus petit entier est pair, et n'est pas un carré parfait si le plus petit entier est impair.
- C n'est jamais un carré parfait.
- **D** on ne peut pas déterminer sous quelles conditions cette somme est un carré parfait ou ne l'est pas.

### Question 28:

Soit p un entier de la forme p = 8n + 7, avec  $n \in \mathbb{N}$ :

- $\mathbf{A}$  p ne peut être la somme de trois carrés parfaits.
- ${\bf B}$  Il existe des valeurs de p telles que p est la somme de trois carrés parfaits.
- ${\bf C}$  Il existe des valeurs de p telles que p est la somme de trois carrés parfaits d'entiers consécutifs.
- $\mathbf{D}$  p ne peut être la somme de trois carrés parfaits d'entiers consécutifs.

#### Question 29:

Si p est premier et  $8p^2 + 1$  est premier alors :

- **A**  $8p^2 3$  est premier
- $\mathbf{B} 8p^2 1$  est premier
- $\mathbf{C} 8p^2 + 3$  est premier
- **D**  $8p^2 + 5$  est premier

Dans les questions 30 à 32, le triplet  $(x, y, z) \in \mathbb{Z}^3$  est solution de l'équation  $x^2 + y^2 = z^2$ . On suppose que PGCD(x, y, z) = 1.

#### Question 30:

- A x et y ne sont pas premiers entre eux.
- ${\bf B}$  x et z ne sont pas premiers entre eux.
- $\mathbf{C}$  y et z ne sont pas premiers entre eux.
- **D** x, y, et z sont 2 à 2 premiers entre eux.

#### Question 31:

- **A** Les nombres x, y et z sont pairs.
- ${f B}$  Les nombres x, y et z sont impairs.
- $\mathbf{C}$  Les nombres x, y et z sont tels que deux sont pairs et un est impair.
- $\mathbf{D}$  Les nombres x, y et z sont tels que deux sont impairs et un est pair.

### Question 32:

 ${\bf A}$  - Le nombre z est impair.

 ${f B}$  - Le nombre z est pair.

 $\mathbf{C}$  - Les nombres x et y sont tous les deux impairs.

 $\mathbf{D}$  - Les nombres x et y sont l'un pair et l'autre impair.

# PARTIE V

On considère la suite de fonctions  $f_n$  définie sur  $\mathbb{R}^+$  par :

$$f_0(x) = 1 - x$$
 et  $f_{n+1}(x) = \frac{1}{2 - f_n(x)}$ 

# Question 33:

On a, pour  $n \ge 1$ :

**A** - 
$$f_n(x) = \frac{1 + nx}{1 + (n+1)x}$$

**B** - 
$$f_n(x) = \frac{1 + (n+1)x}{1 + nx}$$

$$\mathbf{C} - f_n(x) = \frac{1 + (n-1)x}{1 + nx}$$

**D** - 
$$f_n(x) = \frac{1 + nx}{1 + (n-1)x}$$

### Question 34:

Le développement limité de  $f_n$  en 0 à l'ordre 5 est :

**A** - 
$$f_n(x) = 1 - x + nx^2 - n^2x^3 + n^3x^4 - n^4x^5 + x^5o(x)$$

**B** - 
$$f_n(x) = 1 - x + (n+1)x^2 - (n+1)^2x^3 + (n+1)^3x^4 - (n+1)^4x^5 + x^5o(x)$$

C - 
$$f_n(x) = 1 + x - nx^2 + n^2x^3 - n^3x^4 + n^4x^5 + x^5o(x)$$

**D** - 
$$f_n(x) = 1 + x - (n-1)x^2 + (n-1)^2x^3 - (n-1)^3x^4 + (n-1)^4x^5 + x^5o(x)$$

# PARTIE VI

# Question 35:

La famille Capulet compte deux enfants. L'ainée est une fille. La probabilité p que les deux enfants soient des filles est :

**A** - 
$$p = \frac{1}{4}$$

**B** - 
$$p = \frac{1}{3}$$
  
**C** -  $p = \frac{1}{2}$   
**D** -  $p = \frac{3}{4}$ 

**C** - 
$$p = \frac{1}{5}$$

**D** - 
$$p = \frac{3}{4}$$

# Question 36:

La famille Montaigu compte deux enfants, dont un garçon. La probabilité p que les deux enfants soient des garçons est :

**A** - 
$$p = \frac{1}{4}$$

**B** - 
$$p = \frac{1}{5}$$

**B** - 
$$p = \frac{1}{3}$$
  
**C** -  $p = \frac{1}{2}$   
**D** -  $p = \frac{3}{4}$ 

**D** - 
$$p = \frac{3}{4}$$